Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plant Dis ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38050404

RESUMO

Chile leads cherry exports in the southern hemisphere with a total of 415.315 t exported in the 2022 to 2023 season (IQonsulting, 2023). Cytospora canker, produced by Cytospora spp., causes destructive infections and limit the productivity of sweet cherry orchards (Luo et al. 2019). This study was focused on isolating Cytospora strains to identify and characterize the species present in sweet cherry. During the period 2019-2022, ten samples of stem or branch presenting canker, dieback, gummosis or dead buds, were collected from sweet cherry cultivars 'Skeena', 'Lapins', 'Santina', 'Sweetheart', and 'Regina', in the regions Ñuble and O'Higgins, Chile. Five mm pieces from the necrotic wood margins of the samples were rinsed with sterile deionized water, placed on potato dextrose agar (PDA, Difco) and incubated at 20±2 ºC for 5 days. One isolate was recovered from each sample, resulting in ten Cytospora-like strains. Single hyphal tips were transferred onto PDA plates and all isolates were deposited in the Chilean Collection of Microbial Genetic Resources (CChRGM). Colonies grown on PDA reached 89 mm in diameter in 10 d at 25 °C, showing irregular margin, lacking aerial mycelium, initially off-white to cream that turned greenish gray in the center, which darkens with age. After 20 days of culturing on pine needle agar (Chen et al. 2015), isolates produced conidiomata pycnidial, semi-immersed, black, and subglobose (362)445-555(681)×(357)528-700(1053) µm (n=10), generating amber slimy conidia masses; Conidiophores were phialidic, cylindrical, aseptate, hyaline (6.77)9-10.04(12.88)×(0.82)1.1-1.28(1.99) µm (n = 30); conidia were abundant, allantoid, hyaline to light brown, aseptate (3.39)4.28-4.57(5.36)×(0.69)0.96-1.09(1.47) µm (n = 30) (Supplementary Figure 1). No sexual morph was observed. With the exception of the strain RGM 3390, all the isolates shared morphological characters to the descriptions of Cytospora sorbicola Norphanph., Bulgakov, T. C. Wen & K. D. Hyde (Norphanphoun et al. 2017). Isolates were identified at species level, by sequencing DNA regions described by Pan et al. (2020): ITS1-5.8S-ITS2, LSU; act, tef-1α, and tub2 with the exception of the RBP2, because this region could not be amplified in seven out of ten isolates. The consensus tree included the concatenated sequences of the ten isolates and those of reference Cytospora species reported by Ilyukhin et al. (2023) using a maximum likelihood analysis with the tool IQ-TREE webserver. MLSA confirmed the taxonomic affiliation of nine of the isolates with C. sorbicola and one isolate with Cytospora sp. (RGM 3390), that might represent a novel species (Supplementary Figure 2). The isolates RGM 3399 and RGM 3400, were selected randomly for pathogenicity tests. Inoculations were performed on 2-year-old sweet cherry cv. 'Lapins' grow in pots in a greenhouse at 26±6°C. Seven plants per isolate were cut to about 6-cm length from the main stem, and inoculated onto fresh cuts with 5-mm mycelium PDA plugs of 5-d-old culture and wrapped in moist sterile cotton and parafilm to keep moisture. Six plants were inoculated with non-colonized PDA agar plugs as control. The average canker length 3 months after inoculation was 3.1 and 0.8 cm, for RGM 3389 and RGM 3400, respectively (Supplementary Figure 1). Symptomatic twigs were incubated in moist chambers at 20±2 ºC for 10 d, resulting in the re-isolation of Cytospora strains that produced pycnidia and conidia structures in agreement with C. sorbicola. Both strains were reidentified to fulfill Koch's postulates, control twigs remained asymptomatic and no fungus was isolated from these twigs. This is the first report of C. sorbicola causing canker on sweet cherry in Chile. Our findings suggest that this species could be the most recurrent in cherry in central Chile, coinciding with it found in California where C. sorbicola has been described as the main causal agent of Cytospora canker of stone fruits in California (Lawrence et al. 2018).

2.
Plant Dis ; 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36044646

RESUMO

Vaccinium corymbosum L. is the most cultivated blueberry species in Chile. Chilean fruits typically take up to 50 days to reach oversea markets; therefore, controlling post-harvest pathogens is of outmost importance to maintain international food safety and quality standards. In February 2019, the Microbial Genetic Resources Bank at INIA received fruits of V. corymbosum cv. 'Brigitta Blue' from Mariquina (-39.567869, -72.992461), located in the southern Chilean blueberry production zone, for post-harvest disease diagnosis. Asymptomatic fruits were incubated in moist-chambers at 25 °C with light/darkness cycles of 12 h. After 5 d, some fruits showed sunken areas and small surface wounds that exudated orange masses of conidia; under the epidermis, gray acervuli were also detected. After 15d, these fruits became dehydrated, mummified, and covered by mycelia, all characteristic symptoms of anthracnose (Wharton and Schilder 2008). In Chile, Colletotrichum gloeosporioides has, thus far, been the only causal agent of anthracnose reported in blueberry (Lara et al. 2003). Conidia exudated from the diseased fruit were inoculated on potato-dextrose agar (PDA) and incubated at 25 °C for 7 d. The resulting colony was predominantly cottony with gray aerial mycelium, displaying masses of pale orange conidia; on the reverse side, the colony was a pink-reddish color. Under a microscope, conidia were hyaline, fusiform to elliptic in shape, and displaying guttulate of 12.2±1.2 × 4.17±0.3 µm (n=30), characteristics coinciding with those described for Colletotrichum fioriniae (Pennycook 2017; Shivas and Tan 2009) (Supplementary Figure 1). The isolate was deposited in the Chilean Collection of Microbial Genetic Resources (CChRGM) as RGM 3330. Genomic DNA extraction of RGM 3330 and phylogenetic analyses were carried out according to Cisterna-Oyarce et al. (2022). A multi-locus sequencing analysis was carried out using five genetic markers. The internal transcribed spacer (ITS), glyceraldehyde 3-phosphate dehydrogenase (gapdh), actin (act), and chitin synthase 1 (chs-1) were PCR-amplified following Damm et al. (2012) and -tubulin (tub) following Glass and Donaldson (1995). Sequences were deposited in GenBank (ON364141 for ITS and ON369167-70 for tub, act, chs-1, and gapdh, respectively) (Sayers et al. 2021). A BLAST analysis carried out in SequenceServer (Priyam et al. 2019), using a custom database of sequences retrieved from Damm et al. (2012) and Liu et al. (2020), showed that all genetic markers were 100% identical to those of C. fioriniae CBS 128517T (ITS (540/540 identities), gapdh (249/249), act (245/245), and chs-1 (274/274)), except for tub, which shared 99.8% of its identities (416/417) with this species. Maximum likelihood phylogenetic estimation clustered RGM 3330 with C. fioriniae strains CBS 128517T and CBS 126526 with 100% bootstrap support (Supplementary Figure 1). Koch's postulates were carried out with asymptomatic fruits of V. corymbosum cv. 'Brigitta Blue'. Prior to inoculation, fruits were surface-sterilized for 10 s in 70% ethanol, 3 s in 1% NaOCl, 10 s in 70% ethanol, rinsed three times with sterile distilled water, and subsequently placed in moist-chambers. Two groups of three repetitions of 20 fruits each were sprayed with 9 × 106 conidia/mL of RGM 3330 for the first group and with sterile distilled water for the control. After 5 d at 25 °C with light/darkness cycles of 12 h, only fruits sprayed with the conidial solution developed symptoms of anthracnose and the re-isolated fungi were identical in morphology to RGM 3330. This is the first report of C. fioriniae in blueberry in Chile. References Cisterna-Oyarce, V., Carrasco-Fernández, J., Castro, J. F., Santelices, C., Muñoz-Reyes, V., Millas, P., Buddie, A. G., and France, A. 2022. Gnomoniopsis smithogilvyi: identification, characterization and incidence of the main pathogen causing brown rot in postharvest sweet chestnut fruits (Castanea sativa) in Chile. Australasian Plant Disease Notes 17:2. Damm, U., Cannon, P. F., Woudenberg, J. H., and Crous, P. W. 2012. The Colletotrichum acutatum species complex. Stud. Mycol. 73:37-113. Glass, N. L., and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323-1330. Lara, O., Velazquez, C. G., and Ascencio, C. 2003. Colletotrichum gloeosporiodes in blueberry fruit. in: XIII Congreso de Fitopatología. Liu, X., Zheng, X., Khaskheli, M. I., Sun, X., Chang, X., and Gong, G. 2020. Identification of Colletotrichum species associated with blueberry anthracnose in Sichuan, China. Pathogens 9:718. Pennycook, S. 2017. Colletotrichum fioriniae comb. & stat. nov., resolving a nomenclatural muddle. Mycotaxon 132:149-152. Priyam, A., Woodcroft, B. J., Rai, V., Moghul, I., Munagala, A., Ter, F., Chowdhary, H., Pieniak, I., Maynard, L. J., Gibbins, M. A., Moon, H., Davis-Richardson, A., Uludag, M., Watson-Haigh, N. S., Challis, R., Nakamura, H., Favreau, E., Gómez, E. A., Pluskal, T., Leonard, G., Rumpf, W., and Wurm, Y. 2019. Sequenceserver: a modern graphical user interface for custom BLAST databases. Mol. Biol. Evol. 36:2922-2924. Sayers, E. W., Cavanaugh, M., Clark, K., Pruitt, K. D., Schoch, C. L., Sherry, S. T., and Karsch-Mizrachi, I. 2021. GenBank. Nucleic Acids Res. 49:D92-D96. Shivas, R. G., and Tan, Y. P. 2009. A taxonomic re-assessment of Colletotrichum acutatum, introducing C. fioriniae comb. et stat. nov. and C. simmondsii sp. nov. Fungal Divers. 39:111-122. Wharton, P., and Schilder, A. 2008. Novel infection strategies of Colletotrichum acutatum on ripe blueberry fruit. Plant Pathol. 57:122-134. Supplementary material Supplementary Figure 1: Isolation and identification of Colletotrichum fioriniae RGM 3330 from blueberry fruits cv. 'Brigitta Blue' from Chile. (A) A fruit showing anthracnose; (B) colony of Colletotrichum fioriniae RGM 3330 growing on PDA; (C) microscopic observation of the conidia (100x magnification; bar=10 µm); (D) phylogenetic tree resulting from a maximum likelihood analysis of combined sequence data from ITS, act, chs-1, gapdh, and tub regions for Colletotrichum acutatum species complex, number in the nodes represent ultrafast bootstrap values.

3.
Microbiol Resour Announc ; 11(7): e0033522, 2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35731123

RESUMO

Pseudomonas sp. strain RGM 3321 is a phyllosphere endophyte from Fragaria chiloensis subsp. chiloensis f. patagonica that harbors genes associated with plant growth promotion pathways, as well as genes typically found in plant pathogens.

4.
Toxicon ; 119: 180-5, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27317871

RESUMO

Improvements in pain management techniques in the last decade have had a major impact on the practice of total knee arthroplasty (TKA). Gonyautoxin are phycotoxins, whose molecular mechanism of action is a reversible block of the voltage-gated sodium channels at the axonal level, impeding nerve impulse propagation. This study was designed to evaluate the clinical efficacy of Gonyautoxin infiltration, as a long acting pain blocker in TKA. Fifteen patients received a total dose of 40 µg of Gonyautoxin during the TKA operation. Postoperatively, all patients were given a standard painkiller protocol: 100 mg of intravenous ketoprofen and 1000 mg of oral acetaminophen every 8 hours for 3 days. The Visual Analog Scale (VAS) pain score and range of motion were recorded 12, 36, and 60 hours post-surgery. All patients reported pain of 2 or less on the VAS 12 and 36 hours post-surgery. Moreover, all scored were less than 4 at 60 hours post-surgery. All patients achieved full knee extension at all times. No side effects or adverse reactions to Gonyautoxin were detected in the follow-up period. The median hospital stay was 3 days. For the first time, this study has shown the effect of blocking the neuronal transmission of pain by locally infiltrating Gonyautoxin during TKA. All patients successfully responded to the pain control. The Gonyautoxin infiltration was safe and effective, and patients experienced pain relief without the use of opioids.


Assuntos
Artroplastia do Joelho/efeitos adversos , Manejo da Dor/métodos , Saxitoxina/análogos & derivados , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dor/etiologia , Medição da Dor , Amplitude de Movimento Articular , Saxitoxina/uso terapêutico
5.
Int. microbiol ; 18(3): 189-194, sept. 2015. graf, tab, ilus
Artigo em Inglês | IBECS | ID: ibc-152259

RESUMO

Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive (AU)


No disponible


Assuntos
Deinococcus/crescimento & desenvolvimento , Bactérias/metabolismo , Temperatura Alta , Citometria de Fluxo/métodos , Sobrevivência , Carbono/deficiência
6.
Int Microbiol ; 18(3): 189-94, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27036746

RESUMO

Dormancy is characterized by low metabolism and absence of protein synthesis and cellular division enabling bacterial cells to survive under stress. The aim was to determine if carbon starvation and low temperature are factors that modify the proportion of dormant/active cells in Deinococcus sp. UDEC-P1. By flow cytometry, RedoxSensor Green (RSG) was used to quantify metabolic activity and Propidium Iodide (PI) to evaluate membrane integrity in order to determine the percentage of dormant cells. Cell size and morphology were determined using scanning electronic microscopy. Under carbon starvation at 30°C, Deinococcus sp. UDEC-P1 increased its proportion of dormant cells from 0.1% to 20%, decreased the count of culturable cells and average cell volume decreased 7.1 times. At 4°C, however, the proportion of dormant cells increased only to 6%, without a change in the count of culturable cells and an average cellular volume decrease of 4.1 times and 3% of the dormant cells were able to be awakened. Results indicate a greater proportion of dormant Deinococcus sp. UDEC-P1 cells at 30ºC and it suggests that carbon starvation is more deleterious condition at 30ºC than 4ºC. For this reason Deinococcus sp. UDEC-P1 cells are more likely to enter into dormancy at higher temperature as a strategy to survive.


Assuntos
Carbono/metabolismo , Deinococcus/crescimento & desenvolvimento , Deinococcus/metabolismo , Deinococcus/genética , Ecossistema , Viabilidade Microbiana , Temperatura
7.
Rev. nutr ; 22(4): 549-557, jul.-ago. 2009. tab
Artigo em Português | LILACS-Express | LILACS | ID: lil-531688

RESUMO

As dietas de baixo índice glicêmico e baixa carga glicêmica têm sido associadas à redução do risco de doenças crônicas. Por esse motivo há um interesse crescente na sua aplicação para avaliação e orientação nutricional. No entanto, existem limitações quanto ao uso de dados publicados de índice glicêmico e carga glicêmica, pela variedade e formas de processamento dos alimentos vegetais existentes. Devido à dificuldade de realização de ensaios in vivo, uma vez que são custosos, trabalhosos, invasivos e necessitam de período considerável de experimentação, foram desenvolvidas metodologias in vitro que, a partir da velocidade de digestão dos carboidratos, permitem estimar o índice glicêmico dos alimentos de forma prática, simples e econômica. O presente trabalho apresenta o uso de um marcador in vitro, o índice de hidrólise, na estimativa do índice glicêmico e da carga glicêmica, o método mais empregado por pesquisadores brasileiros, visando à sua aplicação por profissionais da área de Nutrição. Os cálculos e as interpretações para estimativa do Índice glicêmico e da carga glicêmica são apresentados por meio de um exemplo prático com alguns alimentos brasileiros e com o grão de amaranto submetido a diferentes processamentos. Na ausência de dados referentes à resposta glicêmica do alimento de interesse, os valores do marcador in vitro podem ser utilizados para estimar o índice glicêmico e a carga glicêmica dos alimentos. Porém, este marcador não deve ser utilizado indiscriminadamente, uma vez que leva em consideração apenas os fatores intrínsecos aos alimentos que influenciam o aproveitamento dos carboidratos disponíveis.


Low glycemic index and low glycemic load diets have been associated with a reduced risk of certain chronic diseases. For this reason, there has been a growing interest in using these concepts' for nutritional assessment and diet prescription. However, the usage of published glycemic index and glycemic load data is limited, because of the variety of types and preparations of plant-source foods. Since in vivo trials are difficult because of their cost labor-intense and time-consuming procedures, in vitro methods have been developed. These methods are based on the speed of digestion of the different carbohydrates, which allows the glycemic index of foods to be estimated in a practical, simple and cheap manner. This paper presents the use of an in vitro indicator, the hydrolysis index, to estimate the glycemic index and glycemic load. This method is the most commonly used glycemic load and index estimation method in Brazil and this paper aims to promote its use among dieticians. The calculations and interpretations to estimate glycemic load and index are presented by means of a practical example using some Brazilian staple foods and the amaranth grain processed in different ways. In the absence of data on the glycemic response of a particular food, the hydrolysis index can be used to estimate its glycemic index and load. However, the in vitro predictor cannot be used indiscriminately in substitution to glycemic index, since it takes into account only the intrinsic factors of foods that affect the glycemic response.

8.
J Food Sci ; 73(7): H160-4, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18803711

RESUMO

Amaranth has attracted a great deal of interest in recent decades due to its valuable nutritional, functional, and agricultural characteristics. Amaranth seeds can be cooked, popped, roasted, flaked, or extruded for consumption. This study compared the in vitro starch digestibility of processed amaranth seeds to that of white bread. Raw seeds yielded rapidly digestible starch content (RDS) of 30.7% db and predicted glycemic index (pGI) of 87.2, the lowest among the studied products. Cooked, extruded, and popped amaranth seeds had starch digestibility similar to that of white bread (92.4, 91.2, and 101.3, respectively), while flaked and roasted seeds generated a slightly increased glycemic response (106.0 and 105.8, respectively). Cooking and extrusion did not alter the RDS contents of the seeds. No significant differences were observed among popped, flaked, and roasted RDS contents (38.0%, 46.3%, and 42.9%, respectively), which were all lower than RDS content of bread (51.1%). Amaranth seed is a high glycemic food most likely because of its small starch granule size, low resistant starch content (< 1%), and tendency to completely lose its crystalline and granular starch structure during those heat treatments.


Assuntos
Amaranthus/química , Carboidratos da Dieta/metabolismo , Manipulação de Alimentos/métodos , Índice Glicêmico , Amido/metabolismo , Pão/análise , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...